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The problem of approximating a finite number of functions simultaneously is
considered. For a general class of norms, a characterization of best approximations
is given. The result generalizes recent work concerned specifically with the
Chebyshev norm. € 1993 Academic Press, Inc.

1. INTRODUCTION

Let X be a compact Hausdorff space and ¥ a normed linear space with
norm | -|ly. Let C(X, Y) denote the set of all continuous functions from X
to Y, and let -], be a norm on C(X, Y). Define a norm on /-tuples of
elements of C(X, Y) as follows: for any ¢,, .., ¢, in C(X, Y) let

!

Z a;¢,

i=1

) (1.1)

A

(@ys s @ = max

llallg=1

where || -| 5 is a given norm on R’, and a = (a,, .., a;,)". For convenience the
left-hand side of (1.1) is abbreviated as ||¢].

Now suppose that functions Fy, .., F;, in C(X, Y) are given. Then the
problem we consider here is approximating these functions simultaneously
by functions in S, an n-dimensional subspace of C(X, Y), in the sense of the
minimization of the norm (1.1). In other words, we want to find fe .S to
minimize

NCEy =1, s Fr = (1.2)

If such a function f* exists, it is called a best simultaneous approximation
to F,, .., F,. Problems of simultaneous approximation have attracted much
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interest over many years. Of particular concern here is a characterization
of best approximations for the norm (1.1): the results generalize to a wide
class of norms a theorem of Tanimoto [3].

2. THE MAIN RESULT

It is necessary to introduce the subdifferential or set of subgradients
of ||-| at any element of C(X, Y). This is the set defined for any convex
function g on C(X, Y) at the point f by

g(f)={weCX, Y): g(F)zg(f)+<{w, F-f)
for all Fe C(X, Y)}

(see, for example, Rockafellar [2]), where the usual inner product notation
1s used to link elements of C(X, Y) and its dual C*(X, Y). For norms this
set has a very convenient characterization: in particular if fe C(X, Y) it is
readily established that we é | f , if and only if

1) <w, o=/,
(1) |Iw]|% <1, where }|-||*% denotes the dual norm

Iwl%= max Cw.f).
[FAVESR!

For a given /-tuple ¢ =(4,, ..., ¢,) of functions in C(X, Y), define the set

!
G(¢)={(ﬂ, w):aeR! lals=1, 3 ad;=lolu Jull=1,wed ”u”A}'

i=1

(2.1)

Note that if (a, w)e G(¢), then ae R’ is an element where the norm on the
right-hand side of (1.1) is attained. Then a key result is the following
characterization of the directional derivative of ||¢|| in the direction y. The
following lemma generalizes in an obvious manner a result for matrices
given in [4].

LeMMmA 1. Let ¢y, ... 9, ¥y, ... ¥, be any elements in C(X, Y). Then

lim M.“.IM: max <W, 21: ai'/’i>'

0+ ! (a, w)e G(o)

i=1
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Proof. For any real t,

!

Z a¢,

i=1

il = ":rnlai‘.

A

2“ i a;(t) ¢;

i=1

A

><wm, 5 ai(z>¢,-> forany (a(t), w(r))e G(é+ ),
1] !

=<W(f), Z a; (), +np)—1t Z ai(’)‘!’i>
i=1 i=1

— o+ ryl— <w(r>, 5 a,-(r)w.->.

i=1

Also,

Ié+ rwl =

Z a;(¢;+1y;)

A

><w, Y a,-(¢,+t|j/,)> forany (a, w)e G(d)

i=1

— 01+, ZI, ad.).

i=

It follows that for all >0, and all (a, w)e G(¢), (a(r), w(1)) e G(d + ty),

/ _ I
<W, Z ai¢i>$M—_“¢—“<<w(t)’ Z ai(t)l//i>'
i=1

i=1 !

If one lets ¢ tend to zero, and uses the weak * compactness of the unit ball
in the dual space (the Alaoglu-Bourbaki theorem, for example, Holmes
[1]) the result follows. [

Now let
¢f)=F.—f, i=1,.,1 forall feS,
and let H(f) denote the set of I-tuples {(4,, .., 4,)} of elements in C*(X, Y)
defined by
H(fY=conv{(aw, .., a,w), (a, w)e G{$(f))}, (2.2)
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where as usual “conv” is used to denote the convex hull. Note that

2 < ¢ () =16,  forall heH(f). (2.3)

i=1
THEOREM 1. f*e S minimizes (1.2) if and only if there exists
h=1(h,, ... h,Ye H(f*) such that

i <hiy f>=0 forall feS. (2.4)

i=1
Proof. Let f* minimize (1.2) but let the stated condition not hold. Let
{b,,.., b,} be a basis for S, and define

!
Dz{deR":d,: Y Lhubyj=1,..n, forallheH{f*)}.
i=1

Then
D = conv(R),

where

/
R= {re R*:r,=73 a;{w,b,> j=1,..n,forall(a, w)eG(tb(f*})}.
i=1

Let ' e R, k=1, 2, ..., so that

{
rft =% aw* by, =1, .0, where (a®), w'*'ye G(d(f*)).

i=1

Then there is a subsequence (not renamed) so that for some w, |Ww|*% =1,
and a, ||afz=1,

(wkFY 5 (w, F, as k— o, forall FeC(X,Y),

using the Alaoglu-Bourbaki theorem, and
a®) >3 as k- 0.

Thus

/
r}“—» Z a{w,b,;>, as k- oo, j=1,.,n

i=1
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Let u'*), i be defined by

!

Y, af¢i= ] u', [ 4 =1, k=12, .,
i=1

!

Y aéi=lola  lal=1

i=1
Then

i ay =1+ W™ a—u*y, k=12,

If one lets & — oo, it follows that
{w,uy=1,

so that wed jul{%. Thus (&, w)e G(¢d(/*}), and so R is closed. It follows
that D is a closed, convex set in R” which does not contain the origin, and
so by a standard separation result there exists ¢ € R” such that

¢’d <0, forall deD.
Thus there exists f'e S such that

/
Y <h, [ <0, forall he H(f*),

i=1

or

1
< Y a,w,f> <0, forall (a, w)e G(¢(f*)).

i=1

Using Lemma 1, with ¢, =7, i=1, ..,/ this contradicts the fact that f*
minimizes (1.2), and establishes the necessity of the conditions (2.4).

Now let these conditions be satisfied at f* and let f be any element of
S. Then

]

Z a,(F,—f)

i=1

(I = max

A

!
> <W, Y a,(F,—f)>, forall (a, w)e G(¢(S*)).

i=1

Suppose that he H(f*) satisfies (2.4). Then
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i1
e =Y <h, Fi—f>
i=1

/
=Y <hy Fo—f*), using (2.4),

i=1

= [&C(/ ™), using (2.3).

The proof is complete. }§

3. SIMULTANEOUS CHEBYSHEV APPROXIMATION

For any /tuple ¢,,i=1, ..,/ in C(X, Y), a Chebyshev norm may be
defined by
max max @ (x) y- 3.1

1<i<s/ xe

Now
1

Z aj¢j(x)

j=1

max max [[¢;(x)], < max max

1<ig€! xeX alfj=1 xeX Y

N

max max [alf, max ¢, ()l y
lafi=1 vex l<js!

using Holder’s inequality.

= max max |lg,(x)| .
Therefore a Chebyshev norm on /-tuples is given by (1.1) when ||| , is the
Chebyshev norm on C(X, Y), and |-||g is the /; norm. The minimization
of (1.2) in this case is the problem considered in [3], and the same
connection is made between (3.1) and (1.1) except that use is made there
of the additional fact that the components of a may be restricted to be
nonnegative. To illustrate the use of Theorem 1, we extract the result for

this norm. For € S, and any ae R’ with Ja] ;= I, define
Bla /) ={xex: Y agf()] = n¢(f)u},
and let -
B(f)={vex: Z a1 =100/l forsome a, tall, =1},

Then for each distinct x* € E(f), there exists a*, [|a*| ;=1 (not necessarily
all distinct), such that

x* e E(a*, f). (3.2)
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To use the theorem, we need the form of the subdifferential of the
Chebyshev norm on C(X, Y) in this case. In particular, (a, w)e G(¢(f))
implies that

w e conv{v(x) §(x), for all xe E(a, 1)},

where ¢ is the delta function, and v(x)e d |3/ _, a,4,(f/(x))|| y- Thus

W =3 e Co(x*), f(x5)Dy,
k=1
where <-,->, denotes an inner product between elements of Y and
its dual, where x*€ E(a, 1) and u,, k=1, .., s, are nonnegative numbers
summing to 1. Using this expression, and Caratheodory’s theorem, it is
readily verified that the conditions of Theorem 1 specialize to the following.

THEOREM 2. [f*€S minimizes (1.2) if and only if there exist m<n+ 1

distinct elements x*, .., x™ of E(f*), m vectors a', ..., a™ satisfying (3.2) with
f=S*, and m positive numbers vy,, ..., y,, summing to | such that
Y e lvlxb), fXF))y =0, forall fes, (3.3)

k=1
where v, (x)€ @ [Z., ¢, (f*CDy, k=1, ..m.
The form given by Tanimoto [3] has (3.3) replaced by
m !l
Y on| X atdi(f 1))
k=1 1

i=

Y
!

Z af¢i(f(x“ ))

i=1

forall feS. (3.4)

m
<Y %
k=1

Y
It is easy to verify that these conditions are sufficient. We show that they are

implied by (3.3). Let f'€ S be arbitrary, and let v, (x) € @ |X/_, a*d,(/*(x)]l y,
k=1, ..., m, satisfy (3.3). Then the left-hand side of (3.4) is just

I 7
5 n<vk(x*), Y af«‘qb,-(f*(x"))>
k=1 i=1 Y

m I
-3 <vk(x*>, ¥ af(Ff(xk)—f*(-r"))>Y

k=1

i=1

m {
) vk<vk(x*), 5 af(F,-(x")—f(x*))>y, by (33),

k=1

<Z)’k

k=1
which gives the required result.

!
Y @i (f(x")

i=1

L}

Y
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