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The problem of approximating a finite number of functions simultaneously is
considered. For a general class of norms, a characterization of best approximations
is given. The result generalizes recent work concerned specifically with the
Chebyshev norm. ,(" 1993 Academic Press. Inc.

1. INTRODUCTION

Let X be a compact Hausdorff space and Y a normed linear space with
norm 11·11 y. Let C(X, Y) denote the set of all continuous functions from X
to Y, and let 11·11 A be a norm on C(X, Y). Define a norm on I-tuples of
elements of C(X, Y) as follows: for any ,pI, ..., ,pt in C(X, Y) let

(1.I )

where 11·11 B is a given norm on IR t, and a = (a I' ... , at) T. For convenience the
left-hand side of (1.1 ) is abbreviated as IlcPli.

Now suppose that functions F 1 , ... , F l in C(X, Y) are given. Then the
problem we consider here is approximating these functions simultaneously
by functions in S, an n-dimensional subspace of C(X, Y), in the sense of the
minimization of the norm (1.1), In other words, we want to find fE S to
minimize

(1.2 )

If such a function f* exists, it is called a best simultaneous approximation
to F 1 , ... , Fl , Problems of simultaneous approximation have attracted much
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interest over many years. Of particular concern here is a characterization
of best approximations for the norm (1.1): the results generalize to a wide
class of norms a theorem of Tanimoto [3].

2. THE MAIN RESULT

It is necessary to introduce the subdifferential or set of subgradients
of \\·\1 A at any element of C(X, Y). This is the set defined for any convex
function g on C(X, Y) at the point f by

iJg(f) = {w E C*(X, Y) : g(F) ~g(f)+ (w, F-f)

for all FE C(X, Y)}

(see, for example, Rockafellar [2]), where the usual inner product notation
is used to link elements of C(X, Y) and its dual C*(X, Y). For norms this
set has a very convenient characterization: in particular if /E C(X, Y) it is
readily established that WE iJ IIfIl A if and only if

(i) (w, f) = IIf11A'
(ii) II W II ~ ~ 1, where 11·11 ~ denotes the dual norm

Ilwll~ = max (w,f).
IIIII. <:; I

For a given I-tuple c!» = (tPl' ..., tPJ of functions in C(X, Y), define the set

G(c!») = {(a, w) : aE~', lIall B = I, it GjtPj = 11c!»11 u, Ilull A = 1, WE iJ Ilull A}'

(2.1 )

Note that if (a, w) E G(c!»), then a E ~, is an element where the norm on the
right-hand side of (1.1) is attained. Then a key result is the following
characterization of the directional derivative of 1Ic!»1I in the direction 'l'. The
following lemma generalizes in an obvious manner a result for matrices
given in [4].

LEMMA 1. Let tPl' ..., tP" t/J J' ... , t/J, be any elements in C(X, Y). Then

lim 11c!» + t'l'II-IIc!»11 = max / w, ±Git/Ji)'
t~O+ t (•. w)eG(+) \ j~ I
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Proof For any real I,

11q.11 = max II ±ai¢J; II
lIallB~ I i~ 1 A

~ \ W(t), it. ai(I)¢J;) for any (a(I), W(I)) E G(+ + 1'l1),

= \ w(t), it. a;(I)(¢Ji+ Il/Ji) - I itl ai(I)l/J;)

= 11+ + 1'l111- 1\w(t), itl ai(t)l/J).

Also,

11++I'l111 ~ Lt. ai(¢Ji+Il/J;)L

~\W'itlai(¢Ji+t"';)) forany (a,W)EG(q.)

= 11+11 +1\W, it! a;l/J).
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It follows that for all I > 0, and all (a, w) E G(q.), (a( t), w(t)) E G(++ 1'l1),

If one lets t tend to zero, and uses the weak * compactness of the unit ball
in the dual space (the Alaoglu-Bourbaki theorem, for example, Holmes
[1 ]) the result follows. I

Now let

i = 1, ..., I, for all IE S,

and let H(f) denote the set of I-tuples {(hi' ..., hi)} of elements in C*(X, Y)
defined by

H(f) = conv{ (a l "', ... , a,w), (a, w) E G(q.(f))}, (2.2)
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where as usual "conv" is used to denote the convex hull. Note that

/

L <hi' ifJ,(f) = IIcj)Cnll,
i= I

for all hE H(f). (2.3 )

THEOREM I. f* E S mmmllzes (1.2) if and only if there exists
h = (h l' ... , h/) E H(f*) such that

i= l

for all IE S. (2.4 )

Proof Let f* minimize (1.2) but let the stated condition not hold. Let
{b l' ... , bn} be a basis for S, and define

D = {d E [R" : di = it! <hi, bi ),} = I, ...,n, for all hE H(f*)}.

Then

D=conv(R),

where

R= {rE W: ri = ,t ai<w, bi ),}= I, ..., n, for all (a, W)EG(cj)(f*»)}.

Let r(k) E R, k = I, 2, ..., so that

/

r.
1k ) = " a(k)<w1k ) b.) j'= I n
} ~ I , } , , ... "

,-= 1

where (a(k), W1k ) EG(cj)(f*»).

Then there is a subsequence (not renamed) so that for some I~', II »'11 ~ = 1,
and a, lIall B = I,

as k --> 00, for all FE C(X, Y),

using the Alaoglu-Bourbaki theorem, and

Thus

a(k)-->a,

/

(k) ,,- <-, b )r i --> L, a i 11, j ,

i= 1

as k --> 00.

as k-->oo, }=l, ...,n.
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Let U(k), ii be defined by
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I

I a~k)1Ji= II cI» II U(kl,

i= J

I

L a;1J; = Ilcjlll ii,
i= I

Then

Iliill A = I.

k= 1,2, ...,

If one lets k -> 00, it follows that

k= 1, 2, ....

so that It' E a II ii II ~. Thus (ii, It') E G(cjl(f*)), and so R is closed. It follows
that D is a closed, convex set in /Rn which does not contain the origin, and
so by a standard separation result there exists C E IW such that

Thus there exists f E S such that

I

L <h;,J) <0,
i= l

or

for all dE D.

for all hE H(f*),

forall (a, W)EG(cjl(f*)).

Using Lemma 1, with 1jJ; = f, i = 1, ..., I, this contradicts the fact that f*
minimizes (1.2), and establishes the necessity of the conditions (2.4).

Now let these conditions be satisfied at f* and let f be any element of
S. Then

IIc1»(f)1I = 1I~:~1 ttl a;(Fi-f)L

;::: (w,;t a;(F;-f)) , forall (a, W)EG(cjl(f*)).

Suppose that hE H(f*) satisfies (2.4). Then
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,
11+(f)1I ~ L <h" F,-f>

;~ 1,
= L <hi, Ff-f* >,

I~ I

= 11c\l(f*)II,

using (2.4),

using (2.3).

The proof is complete. I

3. SIMULTANEOUS CHEBYSHEV ApPROXIMATION

For any I-tuple rP" i= I, ... , I, in C(X, Y), a Chebyshev norm may be
defined by

Now

max max IlrPi(x)11 y.
l~;~1 XEX

~ max max lIali l max IlrPj(x)11 y
1I.1I1~1 XEX 1""1"'"

using Holder's inequality

= max max IIrPj(x)11 y.
1 ~j~1 .'(EX

(3.1 )

Therefore a Chebyshev norm on I-tuples is given by (1.1) when 11·11 A is the
Chebyshev norm on C(X, Y), and 11·110 is the 11 norm. The minimization
of (1.2) in this case is the problem considered in [3], and the same
connection is made between (3.1) and (1.1) except that use is made there
of the additional fact that the components of a may be restricted to be
nonnegative. To illustrate the use of Theorem 1, we extract the result for
this norm. For{ES, and any aE [R' with Iiall o = I, define

E(a,f) = {XE X: II ;tl a,rP,(f(x))L= II+Cf) II },

and let

E(f) = {XEX: II ,tl a,l,6;(f(x)) II y = 1Ic\l(f)1I for some a, Iiall o = I}.

Then for each distinct x k E E(f), there exists ak, Ilakll 0 = I (not necessarily
all distinct), such that

X
k

E E(a\ f). (3.2)
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To use the theorem, we need the form of the subdifferential of the
Chebyshev norm on C(X, Y) in this case. In particular, (a, W)EG(cI>(f))
implies that

WE conv{ v(x) 15(x), for all x E E(a, f)},

where <5 is the delta function, and v(x) E 0 IIL:~= I aiq)j(f(x))11 y. Thus
s

<w,f) = L Ilk <v(Xk),f(Xk)y,
k ~ I

where <".) y denotes an inner product between elements of Y and
its dual, where x k E E(a, f) and Ilk> k = 1, ..., s, are nonnegative numbers
summing to 1. Using this expression, and Caratheodory's theorem, it is
readily verified that the conditions of Theorem 1 specialize to the following.

THEOREM 2. f* E S minimizes (1.2) if and only if there exist m ~ n + 1
distinct elements Xl, ..., x m of E(f*), m vectors ai, ..., am satis/ring (3.2) with
f = f*, and m positive numbers YI' ... , Ym summing to I such that

m

L Yk<vdxk),f(Xk»y=O,
k ~ 1

forall fES, (3.3 )

where vdx) E aIIL::= L a~q)i(f*(x))11 y, k = I, "', m.

The form given by Tanimoto [3] has (3.3) replaced by

kt Yk II it a1 q)i(f*(X
k

))L
~k~1 Yk II it a~q)i(f(xk))L, forall fES. (3.4)

It is easy to verify that these conditions are sufficient. We show that they are
implied by (3.3). LetfE S be arbitrary, and let vdx) E aIIL::~ 1 a~q)i(f*(x))11 y,
k = 1, ... , m, satisfy (3.3). Then the left-hand side of (3.4) is just

k~l Yk\Vk(X
k

), it a7q)i(f*(x
k
») y

= k~l Yk \Vdx
k

), itl a~(Fi(xk)-f*(Xk») y

= k~1Yk \ vdx
k

), itl a~(Fi(xk) - f(X
k») / by (3.3),

~ k~ I Yk II it. a~q)i(f(xk)) II y'

which gives the required result.



182 G. A. WATSON

REFERENCES

I. R. B. HOLMES, "'Geometric Functional Analysis and Its Applications," Springer-Verlag,
New York, 1975.

2. R. T. ROCKAFELLAR, "'Convex Analysis," Princeton Univ. Press, Princeton, NJ, 1970.
3. S. TANIMOTO, A characterization of best simultaneous approximations, J. Approx. Theory

S9 (1989), 359-361.
4. G. A. WATSON, Characterization of the subdiITerential of some matrix norms, Linear

Algehra Appl. 170 (1992), 33-45.


